

#### **NGWA 2015 Groundwater Expo**

**Compromised Water Quality – Challenges and Solutions** 

by

Peter S. Cartwright, PE

December 15, 2015





## Introduction





### **Groundwater Supply**

Total Global Groundwater Volume = 23 x 10<sup>6</sup> kilometers (6 x 10<sup>18</sup> gallons)

Of that, 0.35 x 106 kilometers (9 x 1010 gallons) is < 50 years old  $(1\frac{1}{2}\%)$ 

Science Daily, 16 Nov, 2015



### **Domestic Well Water**

- Supplies 15% of the U.S. population
- Not covered by U.S. EPA Safe Drinking Water Regulations





#### USGS National Water-Quality Assessment Program

23% of sampled domestic wells had one or more health-related contaminant above the MCL

Contaminants 80% naturally occurring (e.g. manganese, arsenic, radon) 20% human source (e.g. nitrates, solvents, pesticides)



## Water-Borne Contaminants





#### Water Contaminants

| Class                    | Examples                                                                                 |  |  |
|--------------------------|------------------------------------------------------------------------------------------|--|--|
| Suspended solids         | Dirt, clay, colloidal materials, silt,<br>dust, insoluble metal oxides and<br>hydroxides |  |  |
| Dissolved organics       | Trihalomethanes, synthetic organic chemicals, humic acids, fulvic acids                  |  |  |
| Dissolved ionics (salts) | Heavy metals, silica, arsenic, nitrate, chlorides, sulfates                              |  |  |
| Microorganisms           | Bacteria, viruses, protozoan cysts,<br>fungi, algae, molds, yeast cells                  |  |  |
| Gases                    | Hydrogen sulfide, methane, radon,<br>carbon dioxide                                      |  |  |





### **Inorganic Ions**

- Arsenic
- Strontium
- Boron
- Iron

- Manganese
- Uranium
- Fluoride
- Nitrate



## **Organic Compounds**

- Pesticides
- Herbicides
- Volatile organics (benzene, chloroform, etc.)
- Tannins
- Fulvic Acid





#### **Dissolved Gases**

- CO<sub>2</sub>
  - In air
  - Reacts with water to form carbonic acid (H<sub>2</sub>CO<sub>3</sub>)
  - Corrosive to metal, will form scale if heated in water containing calcium/magnesium

- O<sub>2</sub>
  - In air
  - No reaction with water
  - Pitting in metal, especially when heated



### **Dissolved Gases** (cont.)

#### • H<sub>2</sub>S

- Produced by anaerobic bioremediation
- May react with water, depending on pH (H2SO4)
- Strong odor inhalation hazard
- Black stains on plumbing
- Explosive hazard
- Can cause corrosion

#### Methane

- Produced by anaerobic bioremediation
- Explosion hazard

#### Radon

- Naturally occurring gas
- Health hazard (can cause lung cancer)



#### **U.S. EPA lists drinking water contaminants by two standards:**

- Primary Health Related
- Secondary Mainly Aesthetic Related
- Maximum Contaminant Level (MCL).
- Usually in mg/L (ppm) or µg/L (ppb).
- New MCLs starting to be listed in ppt concentrations (1 second in ~ 35,000 years).



## **Primary drinking water** standards constantly evolving - virtually always getting tighter





### **NGWA – currently 12 BSP** documents - Best **Suggested Practices –** addressing water-borne contaminants



#### **These Cover:**

- Iron and Manganese
- Strontium
- Boron
- Arsenic
- Uranium
- Fluoride

- Nitrate
- Perchlorate
- Radon
- Methane
- Hydrogen Sulfide
- Microorganisms



## Treatment for Contaminant Reduction





## Optimum Technology Depends Upon:

- Contaminant Chemistry
- Concentrations
- Potential Effect (Health, Aesthetic, etc.)
- Degree of Removal Requirement
- Economics





#### **Treatment Locations**

# **POE** – Point of Entry **POU** – Point of Use





#### **Treatment Summary**

| Contaminant                         | <b>Chemical Form</b> | POE TREATMENT CHOICES |      |                  | POU TREATMENT CHOICES |      |                  |
|-------------------------------------|----------------------|-----------------------|------|------------------|-----------------------|------|------------------|
| Iron (Fe)                           | Cation               | Oxidation/Filtration  | IX   | Softening        | None                  |      |                  |
| Manganese (Mn)                      | Cation               | Oxidation/Filtration  | IX   | Softening        | None                  |      |                  |
| Strontium (Sr)                      | Cation               | <b>RO</b> /Filtration | IX   |                  | RO                    | IX   | Distillation     |
| Boron (B)                           | Anion                | <b>RO</b> /Filtration | IX   |                  | RO                    | IX   | Distillation     |
| Arsenic (As)                        | Anion                | RO*                   | IX*  | Adsorptive Media | RO*                   | IX*  | Adsorptive Media |
| Uranium (U)                         | Anion                | RO                    | IX   |                  | RO                    | IX   | Distillation     |
| Fluoride (F)                        | Anion                | RO                    | IX   | Adsorptive Media | RO                    | IX   | Distillation     |
| Nitrate (NO <sub>3</sub> )          | Anion                | RO                    | IX   |                  | RO                    | IX   | Distillation     |
| Perchlorate (ClO <sub>4</sub> )     | Anion                | RO                    | IX   |                  | RO                    | IX   | Distillation     |
| Radon (Rn)                          | Gas                  | Aeration              |      |                  |                       |      |                  |
| Methane (CH <sub>3</sub> )          | Gas                  | Aeration              |      |                  |                       |      |                  |
| Hydrogen Sulfide (H <sub>2</sub> S) | Gas                  | Aeration              | AC** | Oxidation        |                       | AC** | Oxidation        |
| Microorganisms                      | Suspended Solids     | Disinfection          |      |                  | Distillation          |      |                  |

\* Following oxidation

RO = Reverse Osmosis

*IX* = *Ion Exchange* 

AC = Activated Carbon

TOMORROW



## Specific Examples





## **Almost All Problems Result from More** Than One Contaminant



#### HARDNESS (Not yet covered by BSP)

#### Generally scale formed by insoluble carbonates of calcium and magnesium





- Hardness causes scaling inside piping, on the discharge surfaces of shower fixtures, faucets, etc.
- Also cause soap "scum" in bath tubs, spotting/discoloration of laundry and other aesthetic effects.
- Economic effects: more soap, higher heater costs, more water usage.



- Many groundwater supplies saturated in hardness.
- Any evaporation will cause scaling.





#### Hardness



Dishwasher



**Heating Element** 



Piping



ANADIAN WATER OUALIT



#### **Copper Pipe Leakage** 500 ppm Hardness



Courtesy of: Greg Reyneke www.gregknowswater.com



#### **Pinhole Leak** 1500 ppm Hardness / 300 ppm Sulfate



Courtesy of: Greg Reyneke www.gregknowswater.com



#### **Tank Level Float** 6840 ppm Hardness / 3 ppm Iron IRB



Courtesy of: Greg Reyneke www.gregknowswater.com

### Treatment for Hardness

- Softening (Sodium ion Exchange
- pH Adjustment
- Chemical Addition

#### All POE







#### Iron in wells is the soluble, colorless, Fe<sup>+2</sup> form.

## Contact with air (oxygen) oxidizes it to the Fe<sup>+3</sup> form – insoluble Fe(OH)<sub>3</sub> form – reddish brown precipitate







- Stain fixtures (sinks, toilets, etc.)
- Stain laundry
- Give water a "metallic taste"







#### Concentrations >0.3 ppm cause staining







#### May also be present as:

Bacteria iron formed by iron-reducing bacteria (IRB)
Combined with organics ("heme" iron)















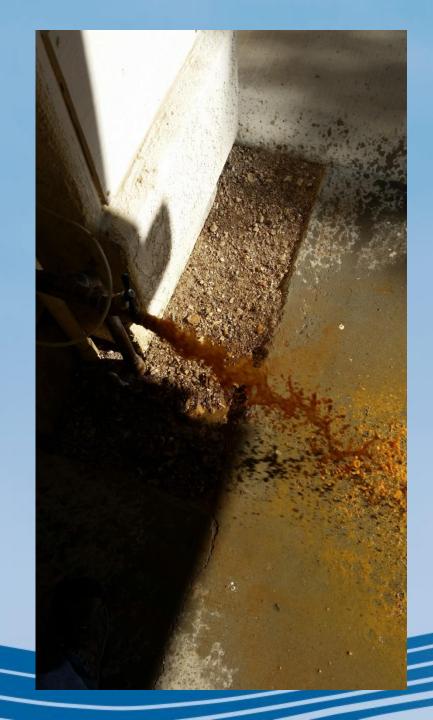













#### **Toilet** 15 ppm Ferric Iron

Courtesy of: Greg Reyneke www.gregknowswater.com

ROW





#### **Storage Tank** 8 ppm Ferric Iron

Courtesy of: Greg Reyneke www.gregknowswater.com

RROW



#### **Treatment for Iron**

- Oxidation/filtration (Mn Greensand)
- Softening (Low iron concentration)





# MANGANESE (Mn)

- Usually present with iron in groundwater
- Oxidized to the insoluble state (not as easily as iron)
- Forms black precipitate
- EPA considering putting manganese on Primary List





#### Manganese

#### Causes similar staining problems as iron



#### Filter Cartridge Manganese



Courtesy of: Greg Reyneke www.gregknowswater.com



#### Manganese

#### Concentrations > 0.05 ppm cause staining



#### Treatment for Manganese

- Oxidation/filtration (Mn Greensand)
- Softening (low manganese concentration





#### ARSENIC

- Odorless, colorless, tasteless in water
- Poisonous, a primary contaminant on the EPA Safe Drinking Water list
- MCL (Maximum Contaminant Level) = 10 ppb (0.010 ppm)
- Chemically classified as a "semi-metal" element



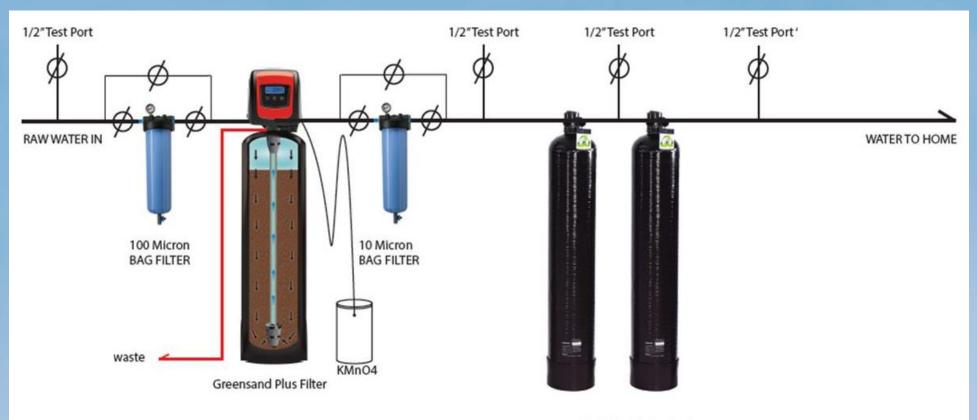


#### Arsenic

- In water supplies usually as As(III) or as As
   (V)
- Can also form organic compounds less toxic, less prevalent






#### **Treatment for Arsenic**

POE: 1) Special iron-based adsorptive media
2) Oxidize to As(V), add iron,
e.g.. Fe(Cl)<sub>3</sub>, filter

POU: 1) Oxidize to As(V), RO
2) Oxidize to As(V), IX
3) Distillation



### Arsenic Removal System



Metal Oxide Sorbent



Courtesy of: Greg Reyneke www.gregknowswater.com

#### RAW WATER DATA (05/26/2015):

Arsenic - 0.023 mg/L Iron - 0.119 mg/L Manganese - 0.070 mg/L Silica - 28.2 mg/L Alkalinity - 250 mg/L pH - 7.6

### Arsenic Removal System



Courtesy of: Greg Reyneke www.gregknowswater.com



#### URANIUM

- Naturally occurring, odorless, colorless, tasteless
- Radioactive, primary contaminant on the EPA Safe Drinking Water list
- EPA MCL = 30 ppb (0.030ppm)
- Some states have set lower limits
- Chemically, forms anion in water



**POE**: Ion (Anion) Exchange

# POU: 1) RO2) IX3) Distillation





#### FLUORIDE

- Naturally occurring, odorless, colorless, tasteless
- Often added to municipal water supplies to minimize incidence of dental cavities
- MCL = 4.0 ppm currently under review





#### **Treatment for Fluoride**

**POE**: Special adsorbing resins (activated alumina)

# POU: 1) RO2) IX (Anion)3) Distillation





#### NITRATE

- Odorless, colorless, tasteless
- Generally result from human activity: Agricultural (fertilizers, animal manure) Septic systems Industrial effluent
- On primary SDWA list
- MCL = 10.0 ppm





#### **Treatment for Nitrate**

#### **POE**: IX (Anion)

# POU: 1) RO2) IX3) Distillation





# METHANE (CH<sub>4</sub>)

- Odorless, colorless gas
- Poisonous gas, extremely flammable
- Produced from anaerobic bacterial activity
- Concentration >10 ppm a danger
- 50,000 ppm concentration explosive





#### Methane





#### **POE**: Aeration

#### **POU**: Not applicable





#### Aeration

-

2.00



# THE ANDROGEN SULFIDE (H2S)

- Colorless, but very pungent gas (rotten egg odor)
- Flammable, explosive and corrosive
- Numerous health effects associated with inhalation
- Produced mainly by sulfate-reducing bacteria (SRB)



### Hydrogen Sulfide







#### Hydrogen Sulfide



TOMORROW



#### **Storage Tank** H<sub>2</sub>S from SRB



Courtesy of: Greg Reyneke www.gregknowswater.com



## Treatment for Hydrogen Sulfide

POE: 1) Aeration
2) Activated Carbon Adsorption
3) Chlorination (bacteria inactivation)
4) IX (Anion)





#### Filter Cartridge Sawdust leaked into well



Courtesy of: Greg Reyneke www.gregknowswater.com



#### Tannins

- Can cause water to have a faint yellow to tea-like color.
- Can cause yellow staining on fabrics, fixtures, china and laundry.
- May cause water to have a "musty" or "earthy" odor.







#### Color



Could be: Turbidity, e.g. Silt Iron, e.g. Ferric Organics, e.g. Tannis



ROW



#### **Contact Information**

#### Peter S. Cartwright, PE pscartwright@msn.com www.cartwright-consulting.com 952-854-4911

